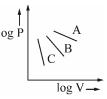


Miscellaneous Exercise Question Bank

- 1. A mono atomic gas X and a diatomic gas Y both initially at the same temperature and pressure are compressed adiabatically and reversibly from a volume V to $\frac{V}{2}$. Which gas will be at higher temperature.
 - (A) Χ

(B)


(C) Both the same

- (D) Cannot be determined
- 2. Curve A, B and C describe the log P versus log V relation for He, Hydrogen, O₃ and PH₃ during adiabatic process. Curve C is for :

(A)

 H_2

(C) O_3 **(D)** PH_3

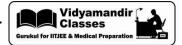
- *3. Which of the following expressions represent the criterion of spontaneity?
 - (A)
- $(\partial S)_{E,V} < 0$
- $(\partial G)_{TP} < 0$
- $(\partial H)_{T,P} < 0$
- $(\partial E)_{S,V} < 0$ (D)

- Which of the following is/are **CORRECT**? *4.
 - Absolute value of heat content of system can be determined using calorimetry (A)
 - **(B)** Absolute value of entropy cannot be known
 - (C) Absolute value of internal energy cannot be known
 - (D) Value of ΔG_f° cannot be determined
- ***5**. According to IInd law of thermodynamics
 - Energy of universe is constant (A)
 - (B) Entropy of universe is continuously increasing
 - (C) Mass and energy can be interconverted to each other
 - **(D)** All spontaneous processes are thermodynamically irreversible
- *6. Which of the given relations is/are CORRECT?
 - G = H TS(A)
- (B) $\Delta E = q + W$
- (C) $\Delta H = \Delta E + \Delta n_{\varphi} RT$
- **(D)** H = E + PV

- ***7**. In which process entropy decreases?
 - (A) Boiling of egg

- (B) Combustion of benzene at 27°C
- (C) Stretching of rubber band
- (D) Dissolution of sugar in water

*8. The **CORRECT** statement is:

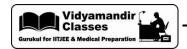


- (A) Work done in reversible isothermal expansion is always more than the work done in irreversible isothermal expansion
- ΔG° is always zero at equilibrium (B)
- (C) $\Delta G\, and\, \Delta S_{Total}\,$ is always zero at equilibrium
- (D) $H_P < H_R$ for exothermic reaction
- 9. A process is spontaneous at all temperatures if

(A) $\Delta H > 0$ and $\Delta S > 0$ **(B)** $\Delta H > 0$ and $\Delta S < 0$

(C) $\Delta H = 0$ and $\Delta S < 0$ **(D)** $\Delta H < 0$ and $\Delta S > 0$

For Question No. 10 - 14


- (A) Statement-I is True, Statement-II is True and Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True and Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False (D) Statement-I is False, Statement-II is True
- **10.** Statement I: $C_p C_V = R$ for an ideal gas.
 - **Statement II:** Average kinetic energy of an ideal gas depends only on temperature.
- 11. Statement I: Since for cyclic process $\Delta S, \Delta G$ and ΔH are zero.
 - **Statement II:** Because S, G and H are state functions.
- **12. Statement I:** The thermodynamics function which determines the spontaneity of a process is the free energy. For a process to be spontaneous change its free energy must be negative.
 - **Statement II:** The change in free energy is related to the change in enthalpy and change in entropy.
- **13. Statement I:** An exothermic process which is non-spontaneous at high temperature may become spontaneous at low temperature.
 - **Statement II:** With decrease in temperature randomness decreases.
- **14. Statement I:** A reaction which is spontaneous and accompanied by decrease of randomness must be exothermic.
 - Statement II: All exothermic reactions are accompanied by decrease of randomness.

15. Match the following

Column I		Column II		
(A)	RMS velocity	(p)	Increase if $\Delta U > 0$	
(B)	K.E.	(q)	Decreases if gas does adiabatic work	
(C)	PV	(r)	Decreases if gas undergoes dimerization	
(D)	$\frac{1}{T_{\rm C}}$ (T _C = Critical Temperature)	(s)	Increases if gas undergoes dissociation	
		(t)	Remains constant if gas does isothermal work	

16. Match the following

Column I			Column II		
(A)	Clausius – Clapeyron equation	(p)	$\Delta G = \Delta H + T \left[\frac{\partial (\Delta G)}{\partial T} \right]_{P}$		
(B)	Kirchhoff's equation	(q)	$\frac{d\ell nK_{P}}{dT} = \frac{\Delta H^{\circ}}{RT^{2}}$		
(C)	Gibb's Helmholtz equation	(r)	$\left[\frac{\partial(\Delta G)}{\partial T}\right] = \Delta C_{p}$		
(D)	Van't Hoff Isochore	(s)	$\ln \frac{P_2}{P_1} = \frac{\Delta H_v}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$		
		(t)	$\Delta G = \Delta U + T \left(\frac{\partial (\Delta G)}{\partial t} \right)_{V}$		

17. Match the following

Match the following						
Column I			Column II			
(A)	Standard free energy change	(p)	$nR ln rac{V_2}{V_1}$ (at constant temperature)			
(B)	Enthalpy change	(q)	–RT ln K			
(C)	Entropy change	(r)	$\Delta E + P\Delta V$			
(D)	Free energy change	(s)	-nFE			
		(t)	Δn_g RT			

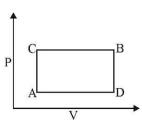
- 18. At 0°C, ice and water are in equilibrium. The values of ΔG and ΔS for the conversion of ice to liquid water are (heat of fusion of ice = 6000 J/mol)
 - (A) 0 and 21.98 JK⁻¹ mole⁻¹
- (B) -ve and zero
- **(C)** +ve and 21.98 JK⁻¹ mole⁻¹
- (D) zero and zero
- **19.** A chemical reaction cannot occur at all if its

- (A) ΔH value is positive and ΔS value is negative
- **(B)** ΔH value is negative and ΔS value is positive
- (C) ΔH and ΔS values are negative but $\Delta H > T\Delta S$
- **(D)** ΔH and ΔS values are positive but $\Delta H > T\Delta S$
- 20. The enthalpy change involved in the oxidation of glucose is -2880 kJ mol⁻¹. Twenty five per cent of this energy is available for muscular work. If 100 kJ of muscular work is needed to walk one kilometer, what is the maximum distance that a person will be able to walk after eating 120 g of glucose?
 - (A) 4.0 km
- **(B)** 5.8 km
- (C) 4.8 km
- **(D)** 6.9 km
- **21. Statement 1 :** For reversible adiabatic process, entropy change is zero.

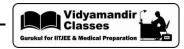
Statement 2 : For reversible adiabatic process work done is a state function.

Statement 3: Heat capacity is an intensive property.

- (A) FFT
- **(B)** FFF
- (C) FTT
- **(D)** TFF


22. For the reaction at 25°C, $X_2O_4(\ell) \longrightarrow 2XO_2(g)$

 $\Delta H = 2.1$ kcal and $\Delta S = 20$ cal K^{-1} . The reaction would be :


- (A) spontaneous
- (B) non-spontaneous (C) at equilibrium
- (D) unpredictable
- 23. If one mole of an ideal gas $\left(C_{p,m} = \frac{5}{2}R\right)$ is expanded isothermally at 300 K until it's volume is tripled,

then change in entropy for the gas is R ln 3 if above expansion is carried out freely (P_{ext} = 0), then find ΔS ?

- (A)
- R ln 3
- **(B)** R ln 2
- (C) R ln 3
- **(D)** None of these
- When a system is taken from state B to state A along path BDA as shown in figure below, 60 J of heat flows out of the system and 10 J of work is done on the system. If $E_B E_C = 30 \text{ J}$ and 20 J of work is done by the system along path ACB, then the heat corresponding to the processes AC and BC is respectively:

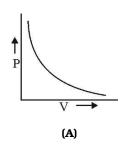
- (A) $q_{\Lambda C} =$
- $q_{AC} = -20J \& q_{BC} = -50J$
- **(B)** $q_{AC} = -20 J \& q_{BC} = 50 J$
- (C) $q_{AC} = 20 J \& q_{BC} = 50 J$
- **(D)** $q_{AC} = 20 J \& q_{BC} = -50 J$

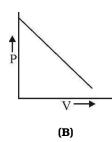
- 25. In a system, a piston caused an expansion against an external pressure of 1.25 bar giving a change in volume of 32 L for which $\Delta E = -51 \text{kJ}$. What was the value of heat evolved:
 - (**A**) -55 kJ
- **(B)** −100 cal
- (C) $-47 \,\mathrm{kJ}$
- **(D)** –91 kJ
- **26.** If 1 mole of an ideal gas expands isothermally at 37°C from 15 litres to 25 litres, the maximum work obtained is:
 - **(A)** 1316 J
- **(B)** 131.6 J
- (C) 8.57 J
- **(D)** 2.92 J
- **27.** What are the signs of the entropy change (+ or -) in the following:

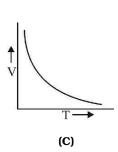
- I. A liquid crystallises into solid
- II. Temperature of crystalline solid is raised from 0 K to 115 K
- $\text{III.} \qquad 2\,\text{NaHCO}_3(s) \rightarrow \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g)$
- IV. $H_2(g) \rightarrow 2H(g)$
- (A) I II III IV
- (B) I II III IV
- (C) I II III IV
- (D) I II III IV
- **28.** If $HA + NaOH \longrightarrow NaA + H_2O \quad \Delta H = -12 \text{ kcal}$

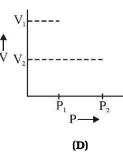
and $HB + NaOH \longrightarrow NaB + H_2O \quad \Delta H = -11kcal$

then equimolar solution of which acid has higher pH:


(A) HA


(B) HB


(C) both have same pH


- (D) information insufficient
- **29.** In the following processes, identify the irreversible process:

- 30. One mole of non-ideal gas undergoes a change of state (1.0 atm, 3.0 L, 200 K) to (4.0 atm, 5.0 L, 250 K) with a change in internal energy (ΔU) = 40L atm . The change in enthalpy of the process in L-atm;
 - (A)
- **(B)** 5
- (C) 42
- **D)** None of these
- $\textbf{31.} \qquad \text{The equilibrium constant for } A(g) + B_2(g) \Longleftrightarrow AB_2(g) \quad K_p = 100 \text{ at } 522 \, \text{K . Structure of } AB_2 \text{ is like } H_2O.$

If bond energy of A – B bond is 200 kJ/mol and that B – B bond is 100 kJ/mol, find ΔS° of above reaction :

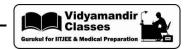
(A) -0.53 J/mol - K

(B) -536 J / mol – K

(C) -550 J/mol - K

(D) -5.36 J/mol - K

32.	When 1 L of NaOH (1 M) is mixed with 1 L of HCl (1 M) the temperature of reaction mixture rises by								
	10°C. When 1 L of NaOH (1 M) is mixed with 2 L (0.5 M) HCl, the temperature of reaction mixture rises approximately by:								
	(A)	10°C	(B)	5°C	(C)	6.67°C	(D)	3.33°C	(•)
33.		$C AH_o^\circ = 6k$		ange of entropy		ng of one mole		vill be ·	Ü
	(A)	∞ ∞	, mor , en	ange of energy	(B)	0	or water	will be .	
	(C)	-21.98 J/n	nol-K		(D)	-13.6 J/mol	-K		
34.	At 27	At 27°C, N_2O_4 has vapour density = $\frac{230}{6}$. If the equilibrium pressure is 0.96 atm, then find ΔG° . (given							
		= 0.3).		б					\bigcirc
	(A)	1.1 Kcal	(B)	193 Kcal	(C)	79.3 Kcal	(D)	8.041 Kcal/	mol
35.	$\Delta S =$	$\frac{q_{rev}}{T}$, so							\odot
	(A)	ΔS is defin	ed only for	reversible proc	eess				
	(B)	· · · · · · · · · · · · · · · · · · ·							
	(C)	(C) For irreversible process, $A \rightarrow B$ and same process taking place reversible, ΔS is same							
	` ,				1	8 F	0 10 0 0 10 10	10, 20 10 001110	
	(D)			or irreversible p				10, 20 15 Same	
36.	(D)	ΔS_{sys} is al-	ways zero f		process				
36.	(D) A 10	ΔS_{sys} is algorithm g piece of iron	ways zero f	or irreversible p	process O°C is dro	opped into 25 g	g of water		
36.	(D) A 10	ΔS_{sys} is algorithm g piece of iron	ways zero f	or irreversible post 100	process O°C is dro	opped into 25 g	g of water		°C) at 27°C .
36. 37.	(D) A 10 Find (A)	$\Delta S_{\rm sys}$ is along piece of irontemperature of $30^{\circ} { m C}$	ways zero f n (C = 0.45 f the iron a (B)	for irreversible properties of J/g°C) at 100 and water system 33°C	process O'C is dro m at there (C)	opped into 25 g mal equilibrium 40°C	g of water	$C = 4.2 \text{ J/g}^{\circ}$ None of thes	°C) at 27°C . ••
	(D) A 10 Find (A) What	$\Delta S_{ m sys}$ is altered g piece of iron temperature of $30^{\circ} { m C}$ is the final	ways zero f n (C = 0.45 f the iron a (B) temperatu	for irreversible properties of J/g°C) at 100 and water system	process O'C is dro m at them (C) ole mono	opped into 25 g mal equilibrium 40°C atomic ideal g	g of water (D) gas that	$C = 4.2 \text{ J/g}^{\circ}$ None of thes	°C) at 27°C . ••
	(D) A 10 Find (A) What	$\Delta S_{ m sys}$ is altered g piece of iron temperature of $30^{\circ} { m C}$ is the final	ways zero f n (C = 0.45 f the iron a (B) temperatu	for irreversible properties of 5 J/g°C) at 100 and water system 33°C are of 0.10 me	process O'C is dro m at them (C) ole mono	opped into 25 g mal equilibrium 40°C atomic ideal g	g of water (D) gas that	$C = 4.2 \text{ J/g}^{\circ}$ None of thes	°C) at 27°C . ••
37.	(D) A 10 Find t (A) What adiab (A)	$\Delta S_{\rm sys}$ is along piece of irong temperature of $30^{\circ} { m C}$ is the final satically if the $250~{ m K}$	ways zero f n (C = 0.45 f the iron a (B) temperatu initial temp (B)	For irreversible part of J/g°C) at 100 and water system 33°C are of 0.10 more of 227 300 K	process O'C is dro m at them (C) ole mono 'C? (use) (C)	opped into 25 g mal equilibrium 40°C atomic ideal g R = 2 cal/K-mo 350 K	g of water (D) (as that	None of these performs 75 of 750 K	°C) at 27°C . ••
	(D) A 10 Find t (A) What adiab (A)	ΔS _{sys} is altered and set of the set of th	ways zero f n (C = 0.45 f the iron a (B) temperatu initial temp (B)	for irreversible post of 5 J/g°C) at 100 and water system 33°C are of 0.10 materials 227 300 K	process O'C is dro m at them (C) ole mono 'C? (use) (C)	opped into 25 g mal equilibrium 40°C atomic ideal g R = 2 cal/K-mo 350 K ergoing the proc	g of water (D) (as that	None of these performs 75 of 750 K	°C) at 27°C . ••
37 . 38 .	(D) A 10 Find (A) What adiab (A) The n (A)	$\Delta S_{\rm sys}$ is altered g piece of iron temperature of 30°C is the final satically if the 250 K molar heat cap $\frac{15}{2}R$	ways zero f n (C = 0.45 f the iron a (B) temperature initial temp (B) acity of a n (B)	For irreversible particles of $J/g^{\circ}C$ at 100 and water system $33^{\circ}C$ are of 0.10 materials at 227 and K anonatomic ideals $\frac{23}{2}R$	process O'C is dro m at therm (C) ole mono 'C? (use in (C) I gas unde	apped into 25 gmal equilibrium 40°C atomic ideal gmal equilibrium 40°C atomic ideal gmal equilibrium 350 K ergoing the process $\frac{7}{2}R$	g of water (D) (as that (D) (D) (Coss $PV^{1/2}$ (D)	None of these performs 75 of 750 K 2 = constant is Zero	C) at 27°C. Let Let Let Let Let Let Let Le
37.	(D) A 10 Find t (A) What adiab (A) The n (A) What	$\Delta S_{\rm sys}$ is altered g piece of iron temperature of 30°C is the final satically if the 250 K molar heat cap $\frac{15}{2}R$ is the change	ways zero f n (C = 0.45 f the iron a (B) temperature initial temp (B) acity of a n (B) e in entrop	For irreversible particles of $J/g^{\circ}C$ at 100 and water system $33^{\circ}C$ are of 0.10 magnetic of 0.10 magnetic of $\frac{23}{2}R$ by when 2.5 magnetic of $\frac{23}{2}R$	process O'C is dro m at therm (C) ole mono 'C? (use in the color of the color	apped into 25 g mal equilibrium 40°C atomic ideal g $R = 2 \text{ cal/K-mo}$ 350 K ergoing the proc $\frac{7}{2}R$ er is heated from	g of water (D) (as that (D) (D) (Coss $PV^{1/2}$ (D)	None of these performs 75 of 750 K 2 = constant is Zero	C) at 27°C. The cal of work The cal of work
37 . 38 .	(D) A 10 Find t (A) What adiab (A) The n (A) What	$\Delta S_{\rm sys}$ is altered g piece of iron temperature of 30°C is the final satically if the 250 K molar heat cap $\frac{15}{2}R$ is the change	ways zero f n (C = 0.45 f the iron a (B) temperature initial temp (B) acity of a n (B) e in entrop	For irreversible particles of $J/g^{\circ}C$ at 100 and water system $33^{\circ}C$ are of 0.10 materials at 227 and K anonatomic ideals $\frac{23}{2}R$	process O'C is dro m at therm (C) ole mono 'C? (use in the color of the color	opped into 25 gmal equilibrium 40°C atomic ideal g $R = 2 \text{ cal/K-mo}$ 350 K ergoing the proc $\frac{7}{2}R$ er is heated from the control of th	g of water (D) (as that (D) (D) (Coss $PV^{1/2}$ (D)	None of these performs 75 of 750 K 2 = constant is Zero	C) at 27°C. Let Let Let Let Let Let Let Le
37 . 38 .	(D) A 10 Find t (A) What adiab (A) The n (A) What	$\Delta S_{\rm sys}$ is altered g piece of iron temperature of 30°C is the final satically if the 250 K molar heat cap $\frac{15}{2}R$ is the change	ways zero f n (C = 0.45 f the iron a (B) temperature initial temp (B) acity of a n (B) e in entrop	For irreversible particles of $J/g^{\circ}C$ at 100 and water system $33^{\circ}C$ are of 0.10 magnetic of 0.10 magnetic of $\frac{23}{2}R$ by when 2.5 magnetic of $\frac{23}{2}R$	process O'C is dro m at therm (C) ole mono 'C? (use in the color of the color	apped into 25 g mal equilibrium 40°C atomic ideal g $R = 2 \text{ cal/K-mo}$ 350 K ergoing the proc $\frac{7}{2}R$ er is heated from	g of water (D) (as that (D) (D) (Coss $PV^{1/2}$ (D)	None of these performs 75 of 750 K 2 = constant is Zero	C) at 27°C. The cal of work The cal of work


$$\mathrm{Fe_2O_3(s)} + 3\mathrm{H_2(g)} \longrightarrow 2\mathrm{Fe(s)} + 3\mathrm{H_2O}(\ell)$$

 $\text{Given:} \quad S_m^{\,0} \, (\text{Fe}_2 \text{O}_3, \, s) = 87.4, \, S_m^{\,0} \, (\text{Fe}, s) = 27.3 \, , \quad S_m^{\,0} \, (\text{H}_2, \, g) = 130.7, \, S_m^{\,0} \, (\text{H}_2 \text{O}, \, \ell) = 69.9 \, \, \text{JK}^{-1} \, \text{mol}^{-1} \, \text$

 $-212.5~{\rm JK}^{-1}\,{\rm mol}^{-1}$ (A)

 $-215.2~\mathrm{JK}^{-1}\,\mathrm{mol}^{-1}$ (B)

 $-120.9\; JK^{-1}\, mol^{-1}$ (C) None of these (D)

- 41. For isothermal expansion in case of an ideal gas:
 - (A)
- $\Delta G = \Delta S$
- (B) $\Delta G = \Delta H$
- $\Delta G = -T. \Delta S$ (C)
- (D) None of these
- **42**. Calculate the entropy change when 3.6 g of liquid water is completely converted into vapour at 100°C. The molar heat of vaporization is 40.85 kJ mol⁻¹

- $6.08 \ \mathrm{JK^{-1}}$ (A)
- (B)
- $109.5\,\mathrm{JK}^{-1}$
- $21.89\,\mathrm{JK}^{-1}$
- $-21.89\,\mathrm{JK}^{-1}$
- The molar entropy content of 1 mole of oxygen (O₂) gas at 300 K and 1 atm is $250 \,\mathrm{J}\,\mathrm{mole}^{-1}\mathrm{K}^{-1}$. Calculate 43. ΔG when 1 mole of oxygen is expanded reversibly and isothermally from 300 K, 1 atm to double its volume (Take $R = 8.314 \text{ J mole}^{-1} \text{ K}^{-1}$, $\log e = 2.303$) igotarrow
 - (A)
- $1.728 \text{ kJ mole}^{-1} \text{ K}^{-1}$

- (B)
- $-1.728 \text{ kJ} \, \text{mole}^{-1} \, \text{K}^{-1}$ (C)
- $0.75 \, kJ \, mole^{-1} K^{-1}$ (D)
- 44. How many of the given statements are correct:
 - Molar entropy of a substance follows the order $(S_m)_{Solid} < (S_m)_{liquid} < (S_m)_{gas}$
 - $\mathbf{II}:$ Entropy change of system for the reaction $H_2(g) \longrightarrow 2H(g)$ is +ve.
 - $\mathbf{III}:$ Molar entropy of a non-crystalline solid will be zero at absolute zero.
 - $\mathbf{IV}:$ If the path of an irreversible process is reversed, then both system and surroundings shall be restored to their original states.
 - \mathbf{v} : Refractive index and molarity are intensive properties.

3

(A)

(B)

- (C)
- (D) 5
- **45**. One mole of an ideal monoatomic gas at 27°C is subjected to a reversible isoentropic compression until final temperature reached to 327° C. If the initial pressure was 1.0 atm, then find the value of in $\ell n P_2$.

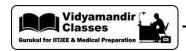
(Given: $\ln 2 = 0.7$).

2

- (A) 1.75 atm
- (B) 0.176 atm
- (C) 1.0395 atm

4

- (D) 2.0 atm
- 46. Two different isotherms representing the relationship between pressure P and volume V at a same temperature of the same ideal gas are shown for masses $(\mathbf{\bullet})$ m_1 and m_2 of the gas respectively in the figure given, then:



(A) $m_1 > m_2$ **(B)** $m_1 = m_2$

(C) $m_1 < m_2$ **(D)** All of the above are possible

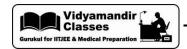
47. Match the following

Column I			Column II		
(A)	Isothermal process (reversible)	(p)	$w = -2.303 \text{ nRT log}\left(\frac{P_1}{P_2}\right)$		
(B)	Adiabatic process (reversible)	(p)	w= 0		
(C)	Adiabatic free expansion	(r)	$w = -2.303nRT log \left(\frac{V_2}{V_1}\right)$		
(D)	Isothermal free expansion	(s)	$w = \frac{nR}{(n-1)} (T_2 - T_1)$		

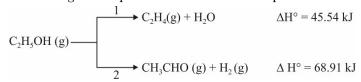
The poisson's ratio for O_2 is 1.4. Which of the following are **CORRECT** for O_2 ? *48.

- $C_{v} = 5cal$ (A)
- **(B)** $C_V = 0.156 \text{ cal}$ **(C)** $C_P = \frac{R\gamma}{\gamma 1}$
- 49. Temperature of 1 mol of a gas is increased by 1°C at constant pressure. The work done is:
- (B) **-**2R
- (C) -R/2
- (D)
- **50**. The dissolution of NH₄Cl in water is endothermic even though NH₄Cl dissolves in water spontaneously. Which one of the following best explains this behaviour? (\mathbf{I})
 - (A) The bonds in solid NH₄Cl are weak
 - **(B)** the entropy-driving force causes dissolution
 - Endothermic processes are energetically favourable (C)
 - (D) The dissolving process is unrelated to energy
- For hypothetical reversible reaction $\frac{1}{2}A_2(g) + \frac{3}{2}B_2(g) \longrightarrow AB_3(g)$; $\Delta H = -20$ kJ if entropies of A₂, B₂, **51**. and AB₃ are 60, 40, and 50JK⁻¹mol⁻¹, respectively the above reaction will be at equilibrium at.
 - (A) 400K
- **(B)** 500 K
- (C) 250 K
- (D) 200 K
- **52**. Under which of the following condition is the relation $\Delta H = \Delta U + P \Delta V$ valid for a closed system at (\blacktriangleright)

- Constant pressure (A)
- (B) Constant temperature
- (C) Constant temperature, and pressure
- (D) Constant temperature, pressure, and composition


For Question No. 53 - 68

- Statement-I is True, Statement-II is True and Statement-II is a correct explanation for Statement-I. (A)
- **(B)** Statement-I is True, Statement-II is True and Statement-II is NOT a correct explanation for Statement-I.
- (C) Statement-I is True. Statement-II is False.
- Statement-I is False, Statement-II is True. (D)
- **(E)** If both I & II are false
- **53**. Statement: I The endothermic reactions are favoured at lower temperature and the exothermic reactions are favoured at higher temperature.
 - Statement: II When a system in equilibrium is disturbed by changing the temperature, it will tend to adjust itself so as to overcome the effect of the change.
- 54. **Statement : I** $C_p - C_V = R$ for an ideal gas.
 - **Statement : II** $\left| \frac{\partial E}{\partial V} \right|_{T} = 0$ for an ideal gas.
- 55. Statement: I When hydrogen gas at high pressure and room temperature expands adiabatically into a region of low pressure, there is a decrease in temperature.
 - Statement: II Hydrogen gas at room temperature is above its inversion temperature.



- **56. Statement: I** The thermodynamic factor which determines the spontaneity of a process is the free energy. For a process to be spontaneous the free energy must be negative.
 - **Statement : II** The change in free energy in relation to the change in a process must always be positive if it is spontaneous.
- **57. Statement : I** The Joules Thomson coefficient for an ideal gas is zero.
 - **Statement: II** There are no intermolecular attractive forces in an ideal gas.
- **58. Statement: I** Enthalpy of graphite is lower than that of diamond.
 - **Statement: II** Entropy of graphite is lower than that of diamond.
- **59. Statement : I** The enthalpy of formation of gaseous oxygen molecules at 298 K and under a pressure of 1 atm is zero.
 - **Statement: II** The entropy of formation of gaseous oxygen molecules under the same condition is zero.
- **60. Statement: I** Decreases in free energy cause spontaneous reaction.
 - **Statement: II** Spontaneous reactions are invariably exothermic.
- **Statement : I** Many endothermic reactions that are not spontaneous at room temperature become spontaneous at high temperature.
 - **Statement: II** Entropy of the system increases with increase in temperature.
- **62. Statement: I** The enthalpy of formation of $H_2O(\ell)$ is greater than that of $H_2O(g)$
 - **Statement : II** Enthalpy change is negative for the condensation reaction $H_2O(g) \longrightarrow H_2O(\ell)$
- **63. Statement: I** Pressure, volume, and temperature are all extensive properties.
 - **Statement: II** Extensive properties depend upon the amount and nature of the substance.
- **Statement: I** When a gas at high pressure expands against vacuum, the work done is maximum.
 - **Statement: II** Work done in expansion depends upon the pressure inside the gas and increase in volume.
- **65. Statement : I** When a real gas is allowed to expand adiabatically through a pin hole from a region of high pressure to a region of low pressure, the temperature of the gas falls.
 - **Statement : II** Work is done at the cost of internal energy of the gas.
- **66. Statement: I** Internal energy change in a cyclic process is zero.
 - **Statement: II** Internal energy is a state function.
- **67. Statement : I** An exothermic process, non-spontaneous at high temperature, may become spontaneous at low temperature.
 - **Statement : II** With decrease in temperature, randomness (entropy) decreases.
- **68. Statement : I** A reaction which is spontaneous and accompanied by decreases of randomness must be exothermic.
 - $\textbf{Statement: II} \hspace{0.2cm} \textbf{All exothermic reaction are accompanied by decrease of randomness.} \\$
- **69.** Heat of combustion of ethanol at constant pressure and at temperature T K(= 298 K) is found to be q J mol⁻¹. Hence, heat of combustion (in J mol⁻¹) of ethanol at the same temperature at constant volume will be:
 - **(A)** RT q
- **(B)** -(q + RT)
- (C) q RT
- **(D)** q + RT

MEQB 89 Thermodynamics

- 70. Which statement regarding entropy is correct?
 - (A) A completely ordered deck of cards has more entropy than a shuffled deck in which cards are arranged randomly
 - **(B)** A perfect ordered crystal of solid nitrous oxide has more entropy than a disordered crystal in which the molecules are oriented randomly
 - (C) 1 mole N₂ gas at STP has more entropy than 1 mole N₂ gas at 273 K in a volume of 11.2 litre
 - (D) 1 mole $\rm\,N_2$ gas at STP has more entropy than 1 mole of $\rm\,N_2$ gas at 273 K and 0.25 atm
- 71. Ethanol can undergo decomposition to form two sets of products.

If the molar ratio of C₂H₄ to CH₃CHO is 8:1 in a set product gases, then the energy involved in the decomposition of 1 mole of ethanol is

(A) 65.98 kJ

72.

- (B) 48.137 kJ
- (C) 48.46 kJ
- (D) 57.22 kJ

Calculate $\Delta_r G^o$ for (NH_4Cl, s) at 310 K.

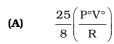
Given: $\Delta_f H^0(NH_4Cl,s) = -314.5 \text{ kJ/mol}; \quad \Delta_r H_c = 0$

$$S_{N_2(g)}^0 = 192 \text{ JK}^{-1} \text{ mol}^{-1};$$

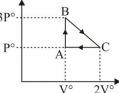
$$S_{H_2(g)}^0 = 130.5 \text{ JK}^{-1} \text{ mol}^{-1};$$

$$S_{Cl_2}^0(g) = 233 \text{ JK}^{-1} \text{ mol}^{-1};$$

$$\begin{split} S_{N_2(g)}^o &= 192 \text{ JK}^{-1} \text{ mol}^{-1}; & S_{H_2(g)}^o &= 130.5 \text{ JK}^{-1} \text{ mol}^{-1}; \\ S_{Cl_2}^o(g) &= 233 \text{ JK}^{-1} \text{ mol}^{-1}; & S^o\text{NH}_4\text{Cl(s)} &= 99.5 \text{ JK}^{-1} \text{ mol,}^{-1} \end{split}$$


All given data are at 300 K.

-198.56 kJ/mol (A)


-426.7 kJ/mol (B)

(C) -202.3 kJ/mol

- (D) None of these
- **73**. One mole of ideal monoatomic gas is carried through the reversible cyclic process as shown in figure. Calculate the maximum temperature attained by the gas during the cycle.

$$(\mathbf{B}) \qquad -\frac{25}{8} \left(\frac{\mathrm{P}^{\circ}\mathrm{V}^{\circ}}{\mathrm{R}} \right)$$

(C)

- 74. The enthalpy of neutralization of a weak monoatomic acid (HA) in 1M solution with a strong base is -55.95 kJ/mol. If the unionized acid requires 1.4 kJ/mol heat for it's complete ionization and enthalpy of neutralization of the strong monobasic acid with a strong monoacidic base is $-57.3\,\mathrm{kJ}$ / mol. What is the % ionization weak acid in molar solution?
 - (A) 1%
- (B) 3.57%
- (C) 35.7%
- (D) 10%
- For a perfectly crystalline solid $C_{p.m.} = aT^3$, where a is constant. If $C_{p.m.}$ is $0.42 \, J \, / \, K mol$ at 10K, **75**. molar entropy at 10k is:

0.14 J / K - mol **(B)**

4.2 J / K - mol (C)

(D) zero

*76. **Statement-I:** The gas undergoes an isothermal process.

Statement-II: The gas undergoes a process such that its initial temperature equal to its final temperature.

- (A) If 1st is true, 2nd may be false.
- If 2nd is true, 1st may be false. **(B)**
- (C) If 1st is true, 2nd must be true.
- If 2nd is true. 1st must be true. (D)
- 77. Fixed amount of an ideal mono atomic gas contained in a sealed rigid vessel (V = 24.6 litre) at 1.0 bar heated reversibly from 27°C to 127°C. Determine change in Gibb's energy (in Joule) if entropy of gas $S = 10 + 10^{-2} T(J / K)$

- (A) 530 J
- (B) 378.5J
- (C) 1778.5J
- (D) 3778.5J

*78. Which of the following statement(s) is/are true?

- (A) $\Delta E = 0$ for combustion of $C_2H_6(g)$ in a sealed rigid adiabatic container
- **(B)** $\Delta_r H^{\circ}(S, monoclinic) \neq 0$
- (C) If dissociation energy of CH₄ (g) is 1656 kJ/mol, and C₂H₆(g) is 2812 kJ/mol then value of C-C bond energy will be 328 kJ/mol
- (D) If $\Delta H_f(H_2O,g) = -242 \text{ kJ/mol}$; $\Delta H_{vap}(H_2O,l) = 44 \text{ kJ/mol}$ then $\Delta_f H^0(OH^-, aq.)$ will be -142 kJ/mol
- 79. The following is an example of an alkylation reaction that is important in the production of isooctane (2, 2, 4-trimethylpentane) from two components of crude oil, isobutane and isobutene. Iso-octane is an antiknock additive for gasoline.

$$\begin{array}{c|cccc} \operatorname{CH}_3 & \operatorname{CH}_3 & \operatorname{CH}_3 & \operatorname{CH}_3 & \operatorname{CH}_3 \\ | & | & | & | & | & | \\ \operatorname{CH}_3 - \operatorname{C-H} + \operatorname{CH}_3 - \operatorname{C} = \operatorname{CH}_2 & \xrightarrow{\operatorname{catalyst}} \operatorname{CH}_3 - \operatorname{C-H} + \operatorname{CH}_2 - \operatorname{C-CH}_3 \\ | & | & | & | & | \\ \operatorname{CH}_3 & | & | & | \\ \operatorname{isobutane} & & & \operatorname{isooctane} \end{array}$$

The thermodynamic equilibrium constant, K, for this reaction at 25°C is 4.3×10^6 , and ΔH° is -78.58 kl/mol.

 ΔG° of the above reaction at 25°C is

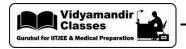
-16.44 kJ mol-1 (A)

(B) +16.44 kJ mol-1

-37.85 kJ mol-1 (C)

- (D) +37.85 kJ mol-1
- Which of the following statement(s) is/are false? *80.

- All adiabatic processes are is entropic (or isentropic) processes (A)
- When $(\Delta G_{system})_{T,P} < 0$; the reaction must be exothermic (B)
- (C) dG = VdP - SdT is applicable for closed system, both PV and non-PV work
- The heat of vaporization of water at 100°C is 40.6 kJ/mol. When 9 gm of water vapour condenses (D) to liquid at 100°C of 1 atm, then $\Delta S_{system} = 54.42 \text{ J/K}$
- *81. For the reaction $2Ag_2O(s) \longrightarrow 4Ag(s) + O_2(g)$, ΔH is 61.17 kJ mol⁻¹ and ΔS is 132 J K⁻¹ mol⁻¹.


Compute the temperature above which the given reaction will be spontaneous.

T > 463.4 K(A)

T > 190.25°C **(B)**

(C) T < 190.25°C **(D)** T < 463.4 K

***82.** Select the correct enthalpy at corresponding temperature using following data :

(i) Heat capacity of solid from 0 K to normal melting point 200 K

$$C_{P,m}(s) = 0.035 \text{ T}$$

$$JK^{-1} mol^{-1}$$

- (ii) Enthalpy of fusion = 7.5 kJ mol^{-1} ,
- (iii) Enthalpy of vaporization = 30 kJ mol⁻¹
- (iv) Heat capacity of liquid from 200 K to normal boiling point 300 K

$$C_{Pm}(\ell) = 60 + 0.016 \text{ T} \text{ JK}^{-1} \text{ mol}^{-1}$$

(v) Heat capacity of gas from 300 K to 600 K at 1 atm

$$C_{P,m}(g) = 50.0$$
 JK⁻¹ mol⁻¹

- **(A)** $S_{200(s)} = 7$
- **(B)** $S_{300(\ell)} = 70.43$
- (C) $S_{300(g)} = 170.43$
- **D)** $S_{600(g)} = 205.09$
- **83.** Two moles of a perfect gas undergo the following processes:

- (i) A reversible isobaric expansion from (1.0 atm, 20.0 L) to (1.0 atm, 40.0 L)
- (ii) A reversible isochoric change of state from (1.0 atm, 40.0 L) to (1.0 atm, 20.0 L)
- (iii) A reversible isothermal compression from (0.5 atm, 40.0 L) to (1.0 atm, 20.0 L)

Calculate the magnitude of work (W) done in L atm in each process

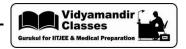
- **84.** The enthalpy of combustion of mol. Wt. 180 glucose is 2808 KJ mol⁻¹ at 25°C. X and Y grams of glucose do you need to consume respective cases [Assume wt = 62.5 Kg].
 - **(A)** To climb a flight of stairs rising through 3M.
 - **(B)** To climb a mountain of altitude 3000 M?

Assume that 25% of enthalpy can be converted to useful work.

X and Y are related as X = mY; then find m.

- A sample of certain mass of an ideal polyatomic gas is expanded against constant pressure of 1 atm adiabatically from volume 2 L, pressure 6 atm and temperature 300 K to state where its final volume is 8L. Then calculate entropy change (in J/K) in the process. (Neglect vibrational degrees of freedom) [1L atm = 100 J, log 2 = 0.3, log = 0.48, log e = 2.3] (approximate integer)
- 1 mole of an ideal gas is allowed to expand isothermally at 27°C till its volume is tripled. If the expansion is carried out reversibly then the ΔS_{universe} will be?

Paragraph for Question No. 87 - 89



Concrete is produced from a mixture of cement, water, sand and small stones. It consists primarily of calcium sillicates and calcium aluminates formed by heating and grinding of clay and limestone. In later steps of cement production a small amount of gypsum, $CaSO_4.2H_2O$ is added to improve subsequent hardening of concrete. The use of elevated temperatures during the final production may lead to formation of unwanted hemihydrate,

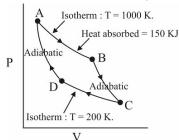
The following thermodynamic data applies at 25°C, standard pressure: 1 bar

•	• •		
Compound	$\Delta H_{f(kJ/mol)}^{o}$	S ^o (kJ ⁻¹ mol ⁻¹)	
$CaSO_4.2H_2O(s)$	- 2021.0	194.0	
$CaSO_4 \cdot \frac{1}{2}H_2O(s)$	-1575.0	130.5	
H ₂ O(g)	- 242.8	188.6	

 $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$

- 87. ΔH^0 for the formation of 1.00 kg of CaSO₄. $\frac{1}{2}H_2O(s)$ from CaSO₄. $2H_2O(s)$ is
 - (A) +446 kJ
- **(B)** +484 k
- (C) 446 k
- **(D)** 484. kJ
- **88.** Equilibrium pressure (in bar) of water vapour in closed vessel containing $CaSO_4 \cdot 2H_2O(s)$, $CaSO_4 \cdot \frac{1}{2}H_2O(s)$, $H_2O(g)$ at 25°C
 - **(A)** $17.35 \times 10^{-4} \text{ bar}$

(B) $2.15 \times 10^{-4} \text{ bar}$


(C) $8.10 \times 10^{-3} \text{ bar}$

- **(D)** $7.00 \times 10^{-4} \text{ bar}$
- **89.** Temperature at which the equilibrium water vapour pressure is 1.00 bar
 - (A) 107°C
- **(B)** 380°C
- **(C)** 215°C
- **(D)** 240°C

Paragraph for Question No. 90 - 92

The accompanying diagram represents a reversible carnot cycle for an ideal gas:

- **90.** How much heat is rejected at the lower temperature, 200 K, during the isothermal compression?
 - (A) 150 kJ

(B) 30 kJ

(C) 120 kJ

- (D) data not sufficient to calculate exact value
- **91.** What is the entropy increase during isothermal expansion at 1000 K?
 - (A) $0.15 \,\mathrm{JK^{-1}}$
- **(B)** 150 kJ K⁻¹
- (C) 150 JK^{-1}
- **(D)** 750 JK⁻¹
- **92.** What is the Gibbs free energy change during the process $A \rightarrow B$?
 - (A) 150 kJ
- **(B)** −150 kJ
- (C) 30 kJ
- **(D)** Data not sufficient

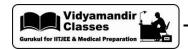
93. For the reaction :

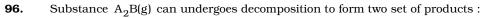
$${\rm C_2H_5OH}(\ell) + 3{\rm O_2(g)} {\longrightarrow} 2{\rm CO_2(g)} + 3{\rm H_2O(g)}$$

If
$$\Delta U^{\circ} = -1373 \text{ kJ mol}^{-1}$$
 at 298 K. Calculate ΔH°

94. For a chemical reaction, ΔC_p is negative ($\Delta C_p < 0$).

The heat required to increase temperature of reactants of this reaction by a certain amount = \mathbf{q}_1 and heat required to increase temperature of products of the same reaction by same amount = \mathbf{q}_2 . Relate \mathbf{q}_1 and \mathbf{q}_2


95. Find out the heat evolved in combustion if 112 litres (at STP) of water gas (mixture of equal volume of $H_2(g)$ and CO(g)).


$$H_2(g) + 1 / 2O_2(g) \longrightarrow H_2O(g)$$

$$\Delta H = -241.8 \text{ kJ}$$

$$CO(g) + 1 / 2 O_2(g) \longrightarrow CO_2(g)$$

$$\Delta H = -283 \text{ kJ}$$

$$A_2B(g) \longrightarrow A_2(g) + B(g) ; \Delta H^\circ = 40 \text{ kJ/mole}$$

$$A_2B(g) \longrightarrow A(g) + AB(g) ; \Delta H^\circ = 50 \text{ kJ/mole}$$

If the molar ratio of $A_2(g)$ to A(g) is 5 : 3 in a set of product gases, calculate the energy involved in the decomposition of 1 mole of A_2B .

- **97.** The free energy change for a reversible reaction at equilibrium is:
 - (A) Positive
- **(B)** Negative
- (C) Zero
- (D) Cannot say
- **98.** Consider the reaction at 300 K $H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$; $\Delta H = -185 \text{ kJ}$.

If 2 moles of $\rm\,H_2\,$ completely react with 2 mole of $\rm\,Cl_2\,$ to form HCl. What is $\rm\,\Delta U^\circ$ for this reaction?

- **(A)** 0
- **(B)** 185 kJ
- (C) 370 kJ
- **(D)** 370 kJ

- **99.** For which of the following change $\Delta H \neq \Delta E$?
 - (A) $H_2(g) + I_2(g) \to 2HI(g)$
- **(B)** $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(\ell)$
- (C) $C(s) + O_2(g) \rightarrow CO_2(g)$
- **(D)** $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
- **100.** The difference between ΔH and ΔE (on a molar basis) for the combustion of n-octane (ℓ) at 25°C would be:
 - (A) 13.6 kJ
- **(B)** 1.14 kJ
- **(C)** 11.15 kJ
- **(D)** + 11.15 kJ